PRESENTATION FOR NEW BINDER TESTS AND SPECIFICATION CHANGE WORKSHOP

by

Fujie Zhou, Ph.D., P.E. Research Engineer Texas A&M Transportation Institute

and

Sheng Hu, Ph.D., P.E. Assistant Research Engineer Texas A&M Transportation Institute

Product 0-6674-P2 Project 0-6674 Project Title: Improving Fracture Resistance Measurement in Asphalt Binder Specification with Verification on Asphalt Mixtures Cracking Performance

> Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

> > Published: October 2014

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

Project 0-6674, Improving Fracture Resistance Measurement in Asphalt Binder Specification with Verification on Asphalt Mixture Cracking Performance

P2: Presentation for New Binder Tests and Specification Change Workshop

The research team of the Texas A&M Transportation Institute (TTI) developed and taught a new asphalt binder test workshop, which was held at the Cedar Park branch of the Texas Department of Transportation (TxDOT) on June 18, 2014. The focus of the workshop was to identify a simple, practical fatigue type of test for asphalt binders, since the cracking issue is the most critical problem pavement engineers are facing every day. It was found that the linear amplitude sweep (LAS) test is a very promising fracture test for evaluating fatigue cracking resistance of asphalt binders at intermediate temperature. Both laboratory mixture tests and field test sections have been employed to validate this binder fatigue cracking test. The mixture fracture test results showed that the LAS test has a reasonable correlation with the Overlay test, which is the standard mixture test for cracking resistance of asphalt mixtures in Texas. Field test sections are still being monitored, and the field observation will be critical for the final validation of the LAS test. The workshop presentation is presented.

TxDOT Project 0-6674 Improving Fracture Resistance Measurement in Asphalt Binder Specification with Verification on Asphalt Mixtures Cracking Performance Workshop

PM: Darrin Jensen
PMC: Jerry Peterson, Stacey Young,
Gisel Carrasco, Dar-Hao Chen

Texas A&M Transportation Institute

Fujie Zhou and Sheng Hu Cedar Park, TxDOT; June 18, 2014

Outline

- Overview (objectives and task by task review)
- Binder fracture tests
- Mixture tests (binder fracture vs. mix fracture)
- Field test sections
- Performance of field test sections: predicted vs. observed
- Asphalt overlay performance simulations
- Statewide catalogue of recommended binder types
- □ Life cycling cost analysis
- What's next

Overview

- Background:
 - Texas mixes are prone to cracking
 - Multiple Stress Creep Recovery (MSCR)
 - A new test procedure
 - Benefit to soft binders
 - Recovery for identifying polymers
 - MnRoad mixes with soft binders

Objectives

- Evaluate MSCR: Jnr, Recovery, Repeatability
- Identify binder fracture/fatigue tests
- Investigate soft binders: cost and benefit

Task by Task Review

- Task 1: Literature Search and Brainstorm Workshop (Done)
- Task 2: Laboratory Asphalt Binder Test (Done)
- Task 3: Asphalt/Aggregate Mastic DMA Test (Done)
- Task 4: Laboratory Mix Test: Validate Binder and Mastic Test Results from Tasks 2 and 3 (Done)
- Task 5: Field Test Sections at Different Environmental Zones: Validate Binder, Mastic, Mix Tests in Tasks 2, 3, and 4 (Done)
- Task 6: Performance Prediction of Field Test Sections and Model Validation (Done)
- Task 7: Pavement Performance Simulations for Different Environmental Zones (Done)
- Task 8: Recommendation on Specification Change (Ongoing)
- Task 9: Workshop on New Asphalt Binder Tests and Specification Change (Ongoing)
- Task 10: Reports (R1 submitted, R2D later)

Outline

Overview (objectives and task by task review)

- Binder tests
 - □ MSCR-rutting test
 - Fracture test
- Mixture test (binder fracture vs. mix fracture)
- Field test sections
- Performance of field test sections: predicted vs. observed
- Asphalt overlay performance simulations
- Statewide catalogue of recommended binder types
- □ Life cycling cost analysis
- What's next

Asphalt Binder Tests

A variety of asphalt binder tests have been performed under this project. All the lab results have been documented in report Tx-0-6674-1.

 $G^*/sin\delta vs. MSCR$

□ Existing: G*/sinδ
 □ Small strain/stiffness
 □ No damage

MSCR: Jnr; Recovery

Permanent strain

TxDOT Viewpoint on MSCR-Jerry

Partial implementation: Replacing elastic-recov.

Full implementation: Jnr-later

□ Test temp.=64°C

- □ PG76 → PG64-"V"
- □ PG70 → PG64-"H"
- □ PG64 → PG64-"S"

TTI's Concerns on MSCR Specification

- Partial implementation: Replacing elastic-recov.
 - Potential problem with RAP/RAS binder
- □ MSCR specification
 - May overestimate elastic
 - recovery to less rutting
 - \blacksquare Jnr vs. G*/sin δ
 - Inr vs. Hamburg test results

TTI's Concerns on MSCR Specification

 \square Nine asphalt binders: Jnr vs. G*/sin δ

MSCR@64°C

TTI's Concerns on MSCR Specification Jnr vs. Hamburg Mixture Test

- 3 mixes
 - Superpave-D
 - OAC=5.5%@4%AV
 - Granite aggregates
 - Dense-graded Type D
 - OAC=4.8%
 - Limestone aggregates
 - Dense-graded Type D
 - OAC=4.6%
 - Crushed gravel

5 asphalt binders

- PG76-22-Jnr_{3.2}=0.03=PG64-E
- □ PG70-22-Jnr_{3.2}=0.73=PG64-V
- PG64-22-Jnr_{3.2}=3.42=PG64-S
- PG64-28-Jnr_{3.2}=1.69=PG64-H
- PG64-34-Jnr_{3.2}=0.73=PG64-V

TTI's Concerns on MSCR Specification Jnr vs. Hamburg Mixture Test

Hamburg Wheel Tracking Test Results: Granite Mixes

TTI's concerns on MSCR specification Jnr vs. Hamburg mixture test

TTI's Concerns on MSCR Specification Jnr vs. Hamburg Mixture Test

MSCR-Jnr vs. $G^*/sin\delta$

- Current Jnr criteria will allow using soft binders (i.e., PG64-28, PG64-34) to be used for very high traffic roads, which jeopardizes rutting problem.
- MSCR-Jnr criteria need further refinement.
- Right now, it is better to keep current PG system until more field data are available! (Field test sections on this issue).

Binder Fracture/Fatigue Tests

		MGGD	Time	Linear			
Item	G* Test	MSCR Test	Sweep Test	Amplitude Sweep Test	Elastic Recovery Test	Double Edge Notch Tension test	DMA Mortar Test
Test method	AASHTO T 315	AASHTO TP 70	NCHRP 9-10 (2)	Bahia et al. (7, 8, 9)	AASHTO T301 ASTM D6084	Ontario Ministry of Transportation Test Method LS-299	Kim et al. (12)
Parameter	G*sinð	Recovery (%)	Fatigue life	Fatigue lives at different strain levels	Elastic recovery (%)	Critical tip opening displacement (CTOD)	Fatigue life
Specimen aging condition	PAV	RTFO	RTFO PAV	RTFO/PAV	RTFO	PAV	Not well defined
Test equipment	DSR				Ductility test machine Ductility test machine with capability of measuring the force and displacement		Advanced DSR
Test specimen	Asphalt bir	nder only and	easy to prep	are	Asphalt binder only and easy to prepare Asphalt binder only and easy to prepare Image: Constraint of the second		Asphalt binder + fine aggregates and much longer time to prepare
Loading mode	Shear				Tension		Shear
Beyond LVE range	No	Yes	Yes	Yes	Yes	Yes	Yes
Correlation with field fatigue distress	Lots of concerns	of To be determined To be determined Preliminarily validated with LTPP sections Used for decades APT fatigue test sections		To be determined			

Outline

- Overview (objectives and task by task review)
- Binder test

Mixture test

Binder fracture vs. mix fracture

- Field test sections
- Performance of field test sections: predicted vs. observed
- Asphalt overlay performance simulations
- Statewide catalogue of recommended binder types
- □ Life cycling cost analysis
- What's next

Experimental Test Plan

Binder Fracture Test G*/sin δ vs. OT Cycles

Except PG76-22, the lower intermediate temperature, the higher OT cycles.

Binder Fracture Test

TxDOT's Elastic Recovery vs. OT Cycles

There is no good relationship between TxDOT's elastic recovery vs. OT cycles. Note that TxDOT's elastic recovery test was run at 50°F (10°C).

Binder Fracture Test LAS vs. OT Cycles

Basically, LAS test results have similar rankings as the OT cycles. LAS test is a very promising test for these five binders.

Binder Fracture Test DENT (CTOD) vs. OT Cycles

DENT-CTOD cannot differentiate PG76-22, PG70-22, and PG64-22.

Binder Fracture Test

□ No perfect binder fracture test is found so far.

The Linear Amplitude Sweep (LAS) test showed a very good correlation with OT cycles.

□ Field validation is needed for the LAS test.

Status of LAS Test

Draft AASHTO Standard available

- Viscoelastic continuum
 - damage theory
- Need further validation

Standard Method of Test for

Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep

AASHTO Designation: TP 101-14

American Association of State Highway and Transportation Officials 444 North Capitol Street N.W., Suite 249 Washington, D.C. 20001

Status of LAS Test

Draft AASHTO Standard-Data Analysis Macro

	- (V		-	-	-			August 1 and	AS_ANAL	SIS_TEMPLAT	TE_V1.5	5 - Microsoft Excel	A Real Property lies	-	_	-		_	-	-	ec.	. 🗊	X
File	Home Insert	Page Lay	out For	mulas Dat	a Review	View															0	0 -	
1	Cut	Arial	- 10	- A' A'	= = =	₿ / -	🚽 Wrap Text	General		-		Normal 8	Normal_Tem	Normal		-	- 7		Σ AutoSum	27	a		
Paste	Copy = Format Painter	BIU	• 🖽 •	31 - A -		(F (F)	Merge & Cente	e · \$ · % ,	38 43	Conditional	Format	as Bad	Good	Neutral	-	Inser	t Delet	e Format	2 Clear *	Sort &	Find &		
Clipb	oard 12		Font	G		Alignment		Numbe	e iš	ronnanny	Tuters		Styles				Cells		E	diting	June La Contra C		
٨٩	27 •	G.	£																1.1				1
0		0	,	Ŧ			. W		¥.	7			AD	40	A	6	AE	AF	40	ALL	AT	AT	E
1 Time	Dhace Apple	IG*Lsin8	2	Damano	Ing (CACA)	log/D		A Sourced Error		2		754	AD	AL	A	0	AL	AF	AG	An	AI	, AU	-
2 [c]	191	[MDat	0	Damaye	log (orog)	logios	anagenric	oquared Error		Sample:	-		Damage level	+N/A	-								
2 [3]	IU.	0.000	#00//01							Model:	0	$m = C_{+}, C_{+}(D) C_{+}$	Damage level		-								
4		0.000	#DIV/01	0					-	C.	G	10-00-01(0/01	G	Summed Error									
5		0.000	#DIV/01	#DIV/01	#DIV/01	#D	V/01 #DIV/01	#DIV/01		1.00	0	#DIV/01	#DIV/01		-								
6		0.000	#DIV/01	#DIV/01	#DIV/01	#D	V/01 #DIV/01	#DIV/01		Tray (Pa)	1	0		<u> </u>									
7		0.000	#DIV/01	#DIV/01	#DIV/01	#D	V/01 #DIV/01	#D(V/01		a	IG'L	144	D,	k	_								
8		0.000	#DIV/01	WDIV/01	#DIV/01	* #D	V/01 #DIV/01	#DIV/0!		#NUM!	10 10	#DIV/01	#N/A	#DIV/0!	-								
9		0.000	#DIV/0!	#DIV/0!	#DIV/01	#D	V/01 #DIV/01	#D/V/01		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	×		10	100	-								
10		0.000	#DIV/0!	#DIV/01	#DIV/01	#D	V/01 #DIV/01	#DIV/01		A	B		Applied Strain (%)	N.	_								
11		0.000	#DIV/0!	#DIV/0!	#DIV/01	#D	V/0! #D/V/0!	#D/V/01		#N/A	1	#NUM!	2.5	5 #N/A									
12		0.000	#DIV/01	#DIV/01	#DIV/01	#D	V/01 #DIV/01	#DIV/01			-		50	#N/A	-								
13		0.000	#DIV/01	#DIV/0!	#DIV/01	#D	V/0! #DIV/0!	#DIV/0!		-	-				1								
14		0 000	#DIV/01	#DIV/01	#DIV/01	#D	V/01 #D/V/01	#D/V/01															
15		0.000	#DIV/0!	#DIV/0!	#DIV/01	#D	V/01 #DIV/01	#DIV/0!				Amplitude	Sween										
16		0.000	#DIV/0!	#DIV/0!	#DIV/0!	#D	V/0! #DIV/0!	#D(V/0!		1		rinpittaat											
17		0.000	#DIV/01	#DIV/01	WDIV/01	11D	V/01 #DIV/01	WDIV/01		-													
18		0.000	#DIV/01	#DIV/0!	#DIV/01	#D	V/01 #DIV/01	#D/V/01		4 1	-												
19		0.000	#DIV/0!	#DIV/01	#DIV/01	#D	V/0! #D/V/0!	#DIV/0!		59 1	-												
20		0 000	INDIV/01	#OIV/01	#DIV/0!	#Di	V/01 #DIV/01	#DIV/0!		s	1												
21		0.000	#DIV/0!	#DIV/0!	#DIV/01	#D	V/0! #DIV/0!	#DIV/01		g 1	-												
22		0.000	#DIV/0!	#DIV/0!	#DIV/01	#DI	V/0! #D/V/0!	#DIV/0!		50													
23		0 000	#DIV/01	#DIV/0!	WDIV/01	#D	V/01 #D/V/01	10/VICI#		ŧ													
24		0.000	#DIV/01	#DIV/0!	#DIV/01	(#D	V/01 #DIV/01	#DIV/01		1 1 C													
25		0.000	#DIV/0!	#DIV/0!	#DIV/0!	(#D	V/0! #DIV/0!	#D(V/0!		0													
26		0 000	#DIV/0!	#DIV/01	WDIV/01	#D	V/01 #DIV/01	WDIV/01			0	0.2 0.4 0.	6 0.8 1	1.2									
27		0.000	#DIV/01	#DIV/01	#DIV/01	#D	V/01 #DIV/01	#DIV/01		-		Effortivo	Shoar Strain 1961										
28		0.000	#010/01	#010/01	#01//01	#0	#DIV/0!	#010/01				checuve	and a grant with										
29		0.000	#DIV/0!	#DIV/0!	#DIV/0!	10	V/01 #DIV/01	#010/01															
31		0.000	#01//01	#01//01	#D0//01	#0	W01 #0//01	#0/0/01		-						-							
32		0.000	#00//01	#01/01	#00/01	-	WOI #DIWOI	#00//01			V	/ECD Damage Cur	ve from Amplitu	de Sweep									
33		0.000	#DIV/01	#DIV/01	#DIV/01	#0	V/01 #D0//01	#DIV/01		1.000						-							
34		0,000	#DIV/01	#DIV/01	#DIV/01	#0	V/01 #DIV/01	#0/0/01		0.900													
35		0.000	#DIV/01	#DIV/01	#DIV/01	#0	V/01 #DIV/01	#DIV/01		0.800													
36		0.000	#DIV/01	//DIV/01	#DIV/01	10	V/01 #DIV/01	#DIV/01		0.700						-							
37		0.000	#DIV/01	#DIV/01	#DIV/01	#D	V/01 #DIV/01	#DIV/01		0.600													
38		0.000	#01//01	#01//01	#00//01	F #D	V/01 #DIV/01	#00//01		11.0.500									•				
14 4 F H	Instructions	VECD A	20		n - Entering	11-12-12-12-12-12-12-12-12-12-12-12-12-1		11 (110-0-0-0-11)) (1					4						II			-	•
Ready																				巴 85%	0	0-	(+

EN 🔺 🏴 📶 🏥 🍀

Outline

- Overview (objectives and task by task review)
 - Binder test
 - Mixture test (binder fracture vs. mix fracture)

Field test sections

- Performance of field test sections: predicted vs. observed
- Asphalt overlay performance simulations
- Statewide catalogue of recommended binder types
- □ Life cycling cost analysis
- What's next

Field Test Sections

- Childress-US62: 3 sections
- □ Fort Worth-Loop820: 4 sections

Objective: To evaluate the influence of different binder type, different binder content, and with/without RAP/RAS

Field Test Sections – SH15

Section ID	Beç	jin	End	d	Longth (ft)
Section ID	Latitude	Longitude	Latitude	Longitude	Length (ff)
S1, PG58-28, 5.5%	36°25.887'	-100°44.277'	36°26.006'	-100°44.033'	1390
S2, PG58-28, 5.8%	36°26.040'	-100°43.966'	36°26.154'	-100°43.705'	1450
S3, PG64-34, 5.8%	36°26.201'	-100°43.560'	36°26.293'	-100°43.268'	1530
S4, PG64-34, 5.5%	36°26.328'	-100°43.155'	36°26.395'	-100°42.956'	1050

Field Test Sections – US62

	Section ID		Begin		End	Longth (fil)
	Section ID	Latitude	Longitude	Latitude	Longitude	Lengin (n)
S	51, PG64-34, with RAP/RAS	33°59.142'	-100°24.172'	33°59.230'	-100°23.891'	1510
	S2, PG70-28, virgin mix	33°59.250'	-100°23.825'	33°59.306'	-100°23.648'	950
S	53, PG70-28, with RAP/RAS	33°59.390'	-100°23.374'	33°59.430'	-100°23.248'	675

Field Test Sections – Loop820

Field Test Sections – Plant Mix Sampling, Coring, and Lab Testing

For these 11 test sections, researchers:

- Ran GPR test
- Monitored the construction
- Sampled at least 7 buckets of plant mix per section
- Took at least 8 field cores per section
- Fabricated lab specimens using plant mix:
 - OT test (at least 5 replicates)
 - Hamburg test (at least 2 replicates)
 - dynamic modulus test (3 replicates)
 - repeated load test (2 replicates)
- Ran the lab testing for both lab molded specimens and field cores

Superpave Gyratory Compactor

Overlay Tester

Asphalt Mixture Performance Tester

Plant Mix Sampling

Ground Penetrating Radar

Outline

- Overview (objectives and task by task review)
- Binder test
- Mixture test (binder fracture vs. mix fracture)
- □ Field test sections

Performance of field test sections: predicted vs. observed

- Asphalt overlay performance simulations
- □ Statewide catalogue of recommended binder types
- □ Life cycling cost analysis
- What's next

Field Test Section Performance Predictions: Software

TxACOL – for AC overlay design and analysis

TxME – for new flexible pavement design and analysis

Field Test Section Performance Predictions – Input Parameters

Fracture Properties

💀 Fracture	Property Data	Contraction of the	1000		Mod	ulus Input			Aug 1		<u> </u>	
Numbe	er of Temperatures	1 📩				evel 3 (Default va	aiue) O	Level 2	(WITCZAK	Model)	• Level	1 (Test Data)
Tem	nperature (F)	А	n		[Dynamic Modulus ((E*,ksi)-					
	77 0.0	0000000970435	5.618395			Number of Tempe	ratures:	5 🗄	Numb	per of free	quencies:	6 🛨
						Temperature (E)			Freque	ncy (Hz)		
	Duttir	a Droparti	00			remperature (r)	25	10	5	1	0.5	0.1
	Ruttii	ig Properti	5			14	2203.3	2119.0	2044.9	1835.1	1728.0	1442.9
🖳 Rutting P	roperty Data					40	1658.5	1494.8	1361.8	1035.5	894.5	590.0
Numbe	er of Temperatures	1				70	784.2	613.8	497.6	281.5	213.1	105.1
						100	206.3	138.9	101.4	47.6	34.4	16.7
Т	emperature (F)	alpha	mu			130	40.1	26.2	19.3	10.0	7.7	4.7
	104	0.6437	0.634						1			
							_	Import		Expor	t	
				-	_							

Dynamic Modulus

Field Test Section Performance Predictions – SH15 Reflective Cracking

Reflective cracking resistance ranking: Section 3>Section 4>Section 2>Section 1

200 180 160 140 <u>छ</u>120 100 80 60 40 20 0 Section 3 Section 1 Section 2 Section 4 Section ID

Modulus ranking (low to high): Section 3<Section 4<Section 1<Section 2

OT Cycles of SH15 Test Sections

OT cycles ranking (high to low): Section 3>Section 4>Section 2>Section 1

E* (25Hz, 40°C) of SH15 Test Sections

Field Test Section Performance Predictions – US62 Fatigue Cracking

OT Cycles of Us62 Test Sections

Reflective cracking resistance ranking: Section 2>Section 3>Section 1 Modulus ranking (low to high): Section 1<Section 2<Section 3

Field Test Section Performance Predictions – Loop820 Reflective Cracking

Reflective cracking resistance ranking: Section 2>Section 1>Section 3>Section 0

OT cycles ranking (high to low): Section 3>Section 2>Section 1>Section 0

Modulus ranking (low to high): Section 2<Section 1<Section 3<Section 0

Field Test Section Performance Predictions – AC Rutting

AC Overlay Rutting of Loop820 Test Sections

Field Test Sections Survey – SH15

Survey Date: 6/7/2014, 8 months after construction. No rutting or cracking observed. Some segregation area was found in Section 4.

Field Test Sections Survey – US62

Survey Date: 6/6/2014, 8 months after construction. No rutting or cracking observed.

Field Test Sections Survey – Loop820

Survey Date: 2/10/2013 and 6/12/2014, 7 and 23 months after construction. No cracking was observed.

Field Test Sections Predicted vs. Observed

- All the crack predictions during the first 2 years are close to zero or very small, which is consistent with the observation.
- Except Loop820, the predicted rut depths in the SH15 and US62 test sections are small (less than 0.1 inch), which are confirmed by the field observation. Loop820 rut depth couldn't be measured due to heavy traffic.
- The predicted performance ranking and difference among test sections are reasonable.
- The field test sections need continued monitoring to further validate the predictions.

Outline

- Overview (objectives and task by task review)
- Binder test
- Mixture test (binder fracture vs. mix fracture)
- □ Field test sections
- Performance of field test sections: predicted vs. observed

Asphalt overlay performance simulations

- Statewide catalogue of recommended binder types
- □ Life cycling cost analysis
- What's next

Asphalt Overlay Cracking Performance Simulations – Partial Factorial Design

- Climatic Zone
 - Dry-Cold: Amarillo; Wet-Cold: Dallas; Dry-Warm: Odessa; Wet-Warm: Beaumont; Moderate: Austin
- Traffic Level
 - □ 3 million; 5 million; 10 million; 30 million
- Overlay Thickness
 - 2 inches; 3 inches; 4 inches
- Overlay Mixture Type
 - 15 mixes; 5 types of binders × 3 types of aggregates
- Existing Pavement Structure Type
 - Conventional Existing AC over GB; Existing JPCP over GB; Thinner Existing AC over CTB

Total Combinations: 5 Climatic Zones \times 4 Traffic Levels \times 3 Overlay Thicknesses \times 15 Mixes \times 3 Existing Pavement Structures = 2700

Asphalt Overlay Cracking Performance Simulation Results

	Environmental Zones	Existing Pavement Structures	Traffic Levels	Overlay Thicknesses	Aggregate Types	Binder Types	Mix OT Cycles	Cracking Life (Months)
1	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG64-22	190	7
2	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG64-28	832	53
3	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG64-34	1600	77
4	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG70-22	91	7
5	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG76-22	89	7
6	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG64-22	106	7
7	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG64-28	673	43
8	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG64-34	1400	68
9	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG70-22	111	7
10	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG76-22	55	7
11	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG64-22	259	7
12	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG64-28	1800	79
13	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG64-34	5000	139
14	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG70-22	224	8
15	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG76-22	120	7
226	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	LimeStone	PG64-22	190	32
227	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	LimeStone	PG64-28	832	79
228	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	LimeStone	PG64-34	1600	114
220	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	LimeStone	PG70-22	Q1	20
225	Environmental Zone 2 (Dry Warm, e.g., Odessa)	Thinner Existing AC over CTP	5 F	2	LimeStone	DG76 22	90	20
230	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Circuit	PG/0-22	69	20
231	Environmental Zone 2 (Dry-warm, e.g., Odessa)	Ininner Existing AC over CIB	5	2	Gravei	PG64-22	106	24
232	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Gravel	PG64-28	673	69
233	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Gravel	PG64-34	1400	104
234	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Gravel	PG70-22	111	23
235	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Gravel	PG76-22	55	16
236	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Granite	PG64-22	259	41
237	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Granite	PG64-28	1800	117
238	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Granite	PG64-34	5000	196
239	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Granite	PG70-22	224	33
240	Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	5	2	Granite	PG76-22	120	23

Asphalt Overlay Cracking Performance Simulation Results Analysis

	Environmental Zones	Existing Pavement Structures	Traffic Levels	Overlay Thicknesses	Aggregate Types	Binder Types	Mix OT Cycles	Cracking Life
10	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG76-22	55	7
5	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG76-22	89	7
4	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG70-22	91	7
6	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG64-22	106	7
9	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG70-22	111	7
15	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG76-22	120	7
1	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG64-22	190	7
11	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG64-22	259	7
14	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG70-22	224	8
7	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG64-28	673	43
2	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG64-28	832	53
8	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Gravel	PG64-34	1400	68
3	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	LimeStone	PG64-34	1600	11
12	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG64-28	1800	79
13	Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	3	2	Granite	PG64-34	5000	139

Required OT number of cycles is 1097 to reach 5 years life (60 months).

Simulation Results Analysis Summary

Environmental Zones	Existing Pavement Structures	Re	quired OT Cycles	to reach 5 years lif	e
		2", 3 million:	4", 30 million	3", 5 million	3", 10 million:
Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Conventional Existing AC over GB	397	213	80	209
Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Conventional Existing AC over GB	164	90	31	98
Environmental Zone 3 (Wet-Cold, e.g., Dallas)	Conventional Existing AC over GB	167	93	33	99
Environmental Zone 4 (Wet-Warm, e.g., Beaumont)	Conventional Existing AC over GB	155	77	31	91
Environmental Zone 5 (Moderate, e.g., Austin)	Conventional Existing AC over GB	167	89	33	96
Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Existing JPCP over GB	16927	511	864	1473
Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Existing JPCP over GB	509	217	147	287
Environmental Zone 3 (Wet-Cold, e.g., Dallas)	Existing JPCP over GB	369	201	106	242
Environmental Zone 4 (Wet-Warm, e.g., Beaumont)	Existing JPCP over GB	240	196	80	216
Environmental Zone 5 (Moderate, e.g., Austin)	Existing JPCP over GB	287	204	90	237
Environmental Zone 1 (Dry-Cold, e.g., Amarillo)	Thinner Existing AC over CTB	1097	1743	394	737
Environmental Zone 2 (Dry-Warm, e.g., Odessa)	Thinner Existing AC over CTB	291	371	102	235
Environmental Zone 3 (Wet-Cold, e.g., Dallas)	Thinner Existing AC over CTB	242	377	102	235
Environmental Zone 4 (Wet-Warm, e.g., Beaumont)	Thinner Existing AC over CTB	232	263	83	167
Environmental Zone 5 (Moderate, e.g., Austin)	Thinner Existing AC over CTB	238	331	95	210

Outline

- Overview (objectives and task by task review)
- Binder test
- Mixture test (binder fracture vs. mix fracture)
- □ Field test sections
- Performance of field test sections: predicted vs. observed
- Asphalt overlay performance simulations

Statewide catalogue of recommended binder types

- □ Life cycling cost analysis
- What's next

Methodology of Recommending Binder Types for Each District

- Indentify the representative climatic zone for each district
- Identify the typical aggregate type used in the district
- Determine the required OT cycles according to the existing pavement structure
- Decide which binder type can meet the requirement

Statewide Catalogue of Recommended Binder Types

		R	ecommended Binder Tyj	pe
Districts	Aggregate	Conventional Existing AC over GB	Existing JPCP over GB	Thinner Existing AC over CTB
01 Paris	Gravel	PG64-28	PG64-34	PG64-28
02 Fort Worth	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-34	PG64-28
03 Wichita Falls	Gravel	PG64-28	PG64-34	PG64-28
04 Amarillo	Gravel	PG64-28	PG64-34 (Higher %AC)	PG64-34
05 Lubbock	Gravel	PG64-28	PG64-34 (Higher %AC)	PG64-28 (Higher %AC) or PG64-34
06 Odessa	Gravel	PG64-28	PG64-28	PG64-28
07 San Angelo	Gravel	PG64-28	PG64-28	PG64-28
08 Abilene	Gravel	PG64-28	PG64-34 (Higher %AC)	PG64-28 (Higher %AC) or PG64-34
09 Waco	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-28	PG64-28
10 Tyler	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-34	PG64-28
11 Lufkin	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-28	PG64-28
12 Houston	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-28	PG64-28
13 Yoakum	Gravel	PG64-28	PG64-28	PG64-28
14 Austin	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-28	PG64-28
15 San Antonio	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-28	PG64-28
16 Corpus Christi	Gravel	PG64-22	PG64-22	PG64-22 (Higher %AC) or PG64-28
17 Bryan	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-28	PG64-28
18 Dallas	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-28	PG64-28
19 Atlanta	Granite	PG70-22	PG64-28	PG64-28
20 Beaumont	Granite	PG70-22	PG64-28	PG64-22 (Higher %AC) or PG64-28
21 Pharr	Gravel	PG64-22	PG64-22	PG64-22 (Higher %AC) or PG64-28
22 Laredo	Gravel	PG64-22	PG64-22	PG64-22 (Higher %AC) or PG64-28
23 Brownwood	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-28	PG64-28
24 El Paso	Limestone	PG64-22 (Higher %AC) or PG64-28	PG64-28	PG64-28
25 Childress	Gravel	PG64-28	PG64-34 (Higher %AC)	PG64-28 (Higher %AC) or PG64-34

Note: This table was developed based on virgin mix.

Outline

- Overview (objectives and task by task review)
- Binder test
- Mixture test (binder fracture vs. mix fracture)
- □ Field test sections
- Performance of field test sections: predicted vs. observed
- □ Asphalt overlay performance simulations
- □ Statewide catalogue of recommended binder types

Life cycling cost analysis

What's next

Life Cycling Cost Analysis: Amarillo

Total Cost Alternative 1: Flexible Alternative 2: Flexible pavement 6434 Pavement 6428 Agency Cost User Cost Agency Cost User Cost Total Cost (\$1000) (\$1000) (\$1000) (\$1000) Undiscounted Sum \$184.14 \$4.67 \$225.29 \$2.78 Present Value \$420.53 \$10.65 \$428.91 \$6.12 EUAC \$51.85 \$1.31 \$52.88 \$0.75 Lowest Present Value Agency Cost Alternative 1: Flexible Pavement 6428 Lowest Present Value User Cost Alternative 2: Flexible pavement 6434 Expenditure Stream Alternative 1: Flexible Alternative 2: Flexible Pavement 6428 pavement 6434 Agency Cost User Cost Agency Cost User Cost (\$1000) Year (\$1000) (\$1000) (\$1000) 2014 \$558.00 \$13.50 \$659.00 \$9.98 2015 2016 2017 2018 \$558.00 \$14.90 2019 \$50.00 2020 2021 \$659.00 \$11.87

\$558.00

(\$1,489.86)

\$16.44

(\$40.17)

(\$1,142.71)

(\$19.07)

Æ

2022

2023

Life Cycling Cost Analysis: Austin

			Total Cost			
	Alternative	e 1: Flexible	Alternative	2: Flexible	Alternative	3: Flexible
	Pavem	ent 6422	paveme	ent 6428	paveme	nt 6434
	Agency Cost	User Cost	Agency Cost	User Cost	Agency Cost	User Cost
Total Cost	(\$1000)	(\$1000)	(\$1000)	(\$1000)	(\$1000)	(\$1000)
Undiscounted Sum	\$243.36	\$6.94	\$245.08	\$3.59	\$258.16	\$2.40
Present Value	\$512.84	\$14.57	\$388.91	\$7.75	\$421.05	\$5.24
EUAC	\$54.64	\$1.55	\$41.44	\$0.83	\$44.86	\$0.56
Lowest Present Va	lue Agency Cost	Alternative 2: Fle	exible pavement	6428		
Lowest Present Val	lue User Cost	Alternative 3: Fle	exible pavement	6434		
		Ex	penditure Strean	n		
	Alternative	e 1: Flexible	Alternative	2: Flexible	Alternative	3: Flexible
	Pavem	ent 6422	paveme	ent 6428	paveme	nt 6434
	Agency Cost	User Cost	Agency Cost	User Cost	Agency Cost	User Cost
Year	(\$1000)	(\$1000)	(\$1000)	(\$1000)	(\$1000)	(\$1000)
2014	\$507.00	\$13.50	\$558.00	\$13.50	\$659.00	\$9.98
2015						
2016						
2017						
2018	\$507.00	\$14.90				
2019			\$50.00		\$50.00	
2020						
2021						
2022	\$507.00	\$16.44				
2023						
2024			\$50.00		\$50.00	
2025			\$558.00	\$17.71		
2026	(\$1,277.64)	(\$37.90)	(\$970.92)	(\$27.61)	(\$500.84)	(\$7.59)

Life Cycling Cost Analysis: Pharr

			Total Cost			
	Alternative Paveme	e 1: Flexible ent 6422	Alternative paveme	2: Flexible Int 6428	Alternative pavemen	3: Flexible nt 6434
	Agency Cost	User Cost	Agency Cost	User Cost	Agency Cost	User Cost
Total Cost	(\$1000)	(\$1000)	(\$1000)	(\$1000)	(\$1000)	(\$1000)
Indiscounted Sum	\$50.70	\$1.35	\$55.80	\$1.35	\$65.90	\$1.00
Present Value	\$131.95	\$3.51	\$145.23	\$3.51	\$171.52	\$2.60
UAC	\$29.64	\$0.79	\$32.62	\$0.79	\$38.53	\$0.58
.owest Present Val	ue Agency Cost	Alternative 1: Fle	exible Pavement	6422		
owest Present Val	ue User Cost	Alternative 3: Fle	exible pavement	6434		
		Ex	penditure Stream	1		
	Alternative Paveme	e 1: Flexible ent 6422	Alternative paveme	2: Flexible nt 6428	Alternative pavemen	3: Flexible nt 6434
Year	Agency Cost (\$1000)	User Cost (\$1000)	Agency Cost (\$1000)	User Cost (\$1000)	Agency Cost (\$1000)	User Cost (\$1000)
2014	\$507.00	\$13.50	\$558.00	\$13.50	\$659.00	\$9.98
2015	-			-	-	-
2016						
2017						
2018						

Outline

- Overview (objectives and task by task review)
- Binder test
- Mixture test (binder fracture vs. mix fracture)
- □ Field test sections
- Performance of field test sections: predicted vs. observed
- Asphalt overlay performance simulations
- □ Statewide catalogue of recommended binder types
- □ Life cycling cost analysis

What's next

Write final report

□ Close out meeting

Implementation plan

